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SUMMARY

The application of queueing theory to the performance analysis of
store-and-forward communications networks is described. Some

basic definitions and results in probability theory are reviewed,

and the important concept of the Markov process is introduced.

Applications of Markov and queueing theory to the study of networks
and network components in equilibrium are taken from s wide range
of recent research literature, with the emphasis placed upon the

formulation of the mathematical model, rather than its solution.

The author feels that this Review should prove invaluable to

mathematicians who wish to gain an appreciation of the power

(and limitations) of an analytical technique that occupies an
important position in current communications research.
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1. INTRODUCTION

From its beginnings twenty years ago with the ARPANET experimental
network, the evolution of packet-switched communications networks has
been well documented [1,3]. Landmarks in this evolution are:

(i) By the end of the 1960's, plummeting computer hardware costs
implied that it was cheaper to allocate communications resources
dynamically (i.e. as a switched network) than to install extra resources
such as point-to-point links.

(ii) During the 1970's, the introduction of standard protocols and
the concept of a layered architecture made it possible (in principle)
for networks to be designed in a logicel way and to be interconnected.

Although the individual protocols for data 1link control, flow
control and congestion control may be easily understood, we cannot as
yet predict the consequences of their interactions in a network subject
to errors and random loading over a period of time. The results of this
ignorance are deadlocks and unnecessary degradation in the network
performance.

In an attempt to understand network behaviour, much work has been
done in the mathematical analysis field by American groups: Professor
Leonard Kleinrock (University of California, Los Angeles) and Dr. Martin
‘Reiser SIBH% are notable examples. Several reviews of analytical work
exist [4 —[8_.

Because the traffic offered to a network (and perhaps also its
routing within the network) is random, we are forced to resort to a
description of the network characteristics (such as throughput, delay
and 1lost traffic) in terms of probability distributions. (In fact, the
idea of network resource sharing is based essentially on a result in
probability theory, namely the lav of large numbers: although the
traffic from an individual wuser may be bursty in nature, the totsl
amount of traffic from many users is likely to be smooth as a function
of time, thus lesiing to an efficient use of resources.) Markov theory
is a poverful method for describing the stochastic (random) nature of
communications networks, as it leads in many cases to tractable models;
nevertheless it can only be applied to fairly simple situations, so
other techniques such as the diffusion approximation are being employed
to treat more complicated models in an approximate manner. Finally,
control theory has bdeen used to investigate the control of networks,
although again there are considerable difficulties in obtaining a
tractable but realistic model.

In Chapter 2, various definitions and results in probability theory
are reviewed. These are needed in order to underastand Chapter 3, which
concerns itself with the theory of stochastic processes, including
Markov  processes, queueing theory and renewal theory. Chapter 4
describes the applications of Markov processes and queueing theory to
the performance evaluation of protocols and network components, with
examples taken from current research literature. In Chapter 5 the
limitations of queueing theory are discussed with reference to dblocking
and priority in networks. Chapter 6 reviews the use of queueing theory
and related approximations in network analysis.

(The material in Chapters 2 and 3 is taken in part from Kleinrock's
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2. REVIEW OF PROBABILITY AND TRANSFORM THEORY

:.“l eSS EREEE R ES S ES NS ErEEEE NN E S S ESEEREEESEERERER -
! .1:.{
i 2.1 The rules of probability

—
-

:::'\'. Ve consider a model which consists of three entities: :
.:\‘ :-
-y (i) The SAMPLE SPACE S, which is the set of mutually exclusive _
o exhaustive outcomes of the model of an experiment. Each member of S is a K
( D) SAMPLE POINT.

i
ra

[ 4
v r

(ii) A family of EVENTS E, where each event is a set of sample

3 'j points. An event corresponds to a real result. -
SO N
*-f.j (iii) A PROBABILITY MEASURE P which maps the events A defined on S N
into the set of real numbers. It satisfies O(P[A]O P[S]-1. Moreover,

Y if A and B are mutually exclusive, then P[AUB]=P A]+pfn} ;
AN

rod

:,'~."' The CORDITIONAL PROBABILITY of A occurring given that B occurred is

."$ defined by R
- P[A!B] = P[AB]/P[B] ( for P[B]#O ).

®

I A and B are STATISTICALLY INDEPENDENT iff P[AB] = P[alP[B]. .
oo :
ﬁj-j: Let {A;] be a set of mutually exclusive (i.e. A;Aj= £ for all i,j, ¢
2. ¢ where ff is the null set) and exhaustive (i.e. A,U A,U...U A = S) events. :
$:- Then this set satisfies:
“apd (1) Theorem of total probability:

NN " "

:-.‘;: P[B] = _EP[A;B] ( -_SP[B:A; ]P[A‘-] from definition of conditional 1
T i= = probability) ¢
2 :
) (ii) Bayes' theorem:

\.I" Y

e P(a; i8] = P[BiA JP[As] / 2 P(BiA; JP(a; ) :
R ' »
:Ef Finally, the numbers of permutations and combinations respectively ‘
"oy of N objects taken K at a time are given by Y
._ v ~ ~ .
5 P = N/(NK)t 5 Cp= () = N1/K1/(N-K)! ;
5 N :
-':':.

o 2.2 Random variabler ;
®e  essssssccccccce- ~
:::‘_-" (a) A random variable is one whose value X(w) depends upon the

v outcome v of a random experiment. Define the event [X=x] = {w: X(w)=x}. :
o Then P[X=x] is the probability that X(w)=x, which is the sum of the -
g probabilities associated with each outcome w for which X(w)=x.
0. :
,.. The PROBABILITY DISTRIBUTION FUNCTION (PDF) of X is

’u.‘ of
:"' B(x) = P[Xx¢x], where [X<x] = {w: X(w)¢x}

o

. The PROBABILITY DENSITY FUNCTION (pdf) of X is f‘(x) = dF{x)/dx. The

L probability of an event occurring between x and x+dx is given by i;(x)dx.

.,

- 7
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Thus we have
b
Placet] = [gx)ax = E(b) - Efa)
Q
The joint PDF and pdf for two random variables X and Y are
E[x,y) = P[X¢x,X¢y) 3 £ (x,5) = &*E (x,y)/dx/dy
The marginal pdf for X is then defined by r;(x) - fgw(x.y)dy.
(b) Random variables X,X,...,X are independent iff
§ a(Toeeesm) = L(D)eeaf(y)
The conditional pdf is defined by
| = ' = =
t;m(x.y) = d/dx P[X<x|Y=y] ,fw(x,ﬂ/f;(y)

The pdf of the sum of two independent random variables X and X, can
be shown to obey the following rule:

(0 = [ agmem & L(NO5W

X4%,

where @ is the CORVOLUTION OPERATOR.

In general, fv(y) = fx.(y)®....@fx.(y) for Y = X, + X, +...+ X,

2.3 Expectation

(a) The expectation of a random varieble X(w) is given by:
o Lad ©
E[x] = X = fxf(x)dx - J[h?(x)]dx - fl"(x)dx
~-Ov =3
where the final expression is odbtained by integration by parts.
If Y is a function of X, i.e. Y = g(X), then
O
B (Y] = j;yf,(y)ay

If £(x) is known, but not Q(y). then we may use the fundamental
theorem of expectation:

E (Y] = E/[e(x)] 'l:(x)&(x)dx

It is always true that X + ¥ = X + Y. If X and Y are independent,
then XY = X Y.

(b) The nth moment of X is X* = E"g(x)dx.

— C_J
The nth central moment is (X-X)* = i.(x-i)'q:)dx.
An important central moment is the VARIANCE cz's (X-X)'= T - (X)*.
6; 4is the STANDARD DEVIATION; the coefficient of variation is Cyzo/X.
If Y =X, ¢ X;4...4 Xy and the X;are independent, then oy’ = £o5; .

The COVARIANCE of two random variables X and Y is

“rES 4
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Cov(X,Y) = (X-X)(Y-Y) = XY - XY

2.4 Limit theorems

Let {X;l be a set of iid (independently identically distributed)
variables, with i = 1,...,n. Define the "sample mean”

V“ = gx‘i /no
Then: ¥=4

(1) PLiw, Xi3x] ¢ ox*/(nx?)

(i1) lim Vo= X with probability one (strong law of large numbers)
(1i1) lm P{z.¢x] = #(x) (CENTRAL LIMIT THEOREM)

where 2 = (1/e;/ﬂ)(g‘X;- nX) ; ¥(x)s f:?p(_yt/z)dy 2
#(x) is the NORMAL DISTRIBUTION.

2.5 The role of transforms

2.5.1 Introduction

In the chapters on Markov processes it will be shown that the
probability distributions for our models are the solutions of linear
difference or differential equations with constant coefficients. The
standard method for solving such equations is to use gz- or Laplace
transforms respectively.

2.5.2 The g-transform

(a) Let £,be a function of discrete time, where n=0,1,2,... . The
g-transform F(z) of f,is defined by

L]
F(g) = Zof.z". vhere 2z is complex.
[ %4

This relationship is written as £ F(z). The transform exists if
there is an &>0 such that lim 1f.)/a™= 0.

The CONVOLUTION PROPERTY of the g-transform is iLng-)G(z)F(z),
1@z, - 3 L a8
kszo

Given a g-transform P(gz), we may recover the sequence f, by two
methods:

vwhere

f, = (1/n!) d“r(l)/dz.LtO

f,

= (~203)§F(2) e "ae
€

In the second method (the INVERSION FORMULA), the closed contour C
must surround all poles of F(g); the Cauchy Residue Theorem may then be

ecEra—re

Ao A A, V. .4
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o (b) To solve the general difference equation
>
:t + a + + a = e n=k, k+1
3 BB’ i B o a (N ' veeee
{r where the a;are known coefficients, e,is a given function of n, and
N K boundary equations are given, we proceed as follows. Multiply through r
‘\ﬁ by £z and sum from k tom i.e. ;
:: - » o e
N a. _z‘ = %e z. &
:'{: “g ivzﬂ 18.-\ as [ ::
{ Then pick out expressions for G(gz) in this equation and make use of
> the bdoundary conditions to eliminate any unknowns. G(z) may then be
ij obtained and inverted.
tat
488 (c) If X is a raniom variable and g,* P[X=k], then G(z) is known as
=N the probability generating function. Note that
',:: c(z) = E[2¥] ; 36/3zi,,, = X ¥6/2y, = -
L
b L 2.5.3 The Laplace transform
o7
L (a) This is for functions of continuous time. It is defined by
® )
e F¥s) = .[f(t)exp(-st)dt , vwhere 8 is complex.

S We write this as f(t)<?>fis). It possesses the convolution property
r(t)@g(t) = Ms)d\s), where the convolution now involves integrals
Y., rather than sums. Combining this with the result of Section 2.2, we have
an easy way of obtaining the Laplace transform of the pdf of the sum of

53 P

>, two independent variables.
N A laplace transform may be inverted by standard techniques such as
:; the inversion integral method.
Cad
) (b) To solve the general constant-coefficient Nth order linear
- differential equation
W
N 8, dVE(t)/atY + ...+ adf(t)/dt + o f(t) = e(t)
o
"
\.

we transform bdoth sides to obtain an algebraic equation for fka).
which can then be inverted.

(¢) The Laplace transform A?a} of the pdf of a random variable X

may be written as A{s) = E[exp(-sX)]. The moments of X may be found by
solving



3. STCCHASTIC PROCESSES

3.1 Definition of a stochastic process

A stochastic process is a function X(t,w) = X(t) whose values are
random variables. It can be thought of as a family of random variables
"indexed” by the time t. Both X and t may be continuous or discrete. The
relationships of the X(t) to each other are described by the joint PDF;

B (x;t) = P[X()€x 000, X(1)¢x, ] for all x, t, n.

X(t) is said to be STATIONARY if it is invariant to time shifts,
i-e-

Fe(xst+T) = F(x;t) ,
where t+Y implies the vector (t,+7T,t,+%,......).
The pdf for a stochastic process X(t) is f,(x;t) = IP(x;t)/0% .

Then: o
X0 =[x gnt) .

The arrival of customers to a service facility is an example of a
stochastic process. The queueing process is characterised by

Interarrival time PDF = A(t) = P[time between arrivals ¢ t]
Service time PDF = B(t) = P[service time ¢ t]

A queueing process is conventionally written as A/B/m/K, where A
and B are the interarrival and service time PDFs respectively, m is the
number of servers, and K is the storage capacity.

Let A be the average arrival rate of customers to the system.

If T is the average time spent in the system by any customer, then
the average occupancy N of the system is given by LITTLE'S LAW:

N = AT

An intuitive "proof" of this law is that an arriving customer
should find the same number of customers on average in the system as he
leaves behind on his departure.

Let M be the average service rate. We define the UTILISATION FACTOR
P as = (average arrival rate)x(average service time) = A/a . The
system is stable only if O¢p<i; if @31, the number of customers in the
system will grow without bound. For a single-server queue, © is also the
TRAFFIC INTENSITY.

Consider a single-server system and let T be an arbitrarily long
time interval. Then the number of arrivals in this interval will be
approximately equal to AY, by the law of large numbers. If p,is the
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probability that the server is idle at some randomly selected time, then

number of customers served during ¥ ¥ 7(1-]9,44, with probability 1

SoM FT(1-ps Sp = Mpdi-p, a8 T —>oo.
. P = 1-po = fraction of time that server is busy

The above results are true for general interarrival and service
time PDFs; in this case the single-server queue is denoted as G/G/1.

In order to arrive at tractable models for communications networks,
restrictions must be imposed upon the form of the interarrival anid
service time PDFs. A common system employed is the M/M/1 queueing
system, where M represents the Markovian (or exponential) distribution.
The M/M/1 queue is deacribed later in this chapter.

3.3 Some stochastic processes

Stochastic processes become more interesting (and certainly easier
to analyse'!) if some structure is imposed upon the joint PDF.

A MARKOV PROCESS is a random process in which the probability of
the next state being of a particular type depends only on the current
state and not upon the system's past history. If the Markov process has
a discrete state space, the process is called a MARKOV CHAIN. We shall
be interested mostly in Markov chains; the case of a continuous state
space is the province of the diffusion approximation [3].

State transitions may occur at any time for a continuous-time
Markov chain. The Markov property dictates that the time for which a
state may remain unchanged is distributed exponentially. In the case of
a discrete-time Markov chain, transitions must be made at every unit
time; the Markov property then dictates that the time for which a state
may remain unchanged is distributed geometrically.

The BIRTH-DEATH PROCESS is a speciml case of a Markov chain where
transitions may only take place to the current state or neighbouring
states.

A SEMI-MARKOV PROCESS is a generalised Markov process in which the
times between state changes obey an arbitrary probability distridbution
(discrete or continuous). A Markov process can still be defined at the
instants of transition and is known as an imbedded Markov process.

A RANDOM WALK is an example of a semi-Markov process in which we
consider the motion of a particle in a state space such that the next
position of the particle is equal to the sum of the previous position
end a random variable drawn independently from an arbitrary
distribution. This distribution does not depend on the state of the
process except perhaps at some boundary states; i.e. a random walk is a
sequence {S,; n = 1,2,...} which satisfies

S“' = X,* Xa* esces * x“ (n - 1.2,.-.0)
where S, = O and the X; are independently drawn from the same

distribution. The 1label n counts the numder of transitions made. The
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tame intervals between transitions are of no interest in a random walk;
what is of interest is the position § after n transitions.

A RENEWAL PROCESS is similar to a random walk, but in this case the
quantity of interest is the distribution of time between transitions.
Thus S, is now the time at which the nth transition takes place, ani X,is
the time between the (n-1)th and nth transitions.

3.4.1 Introduction
The Markov property for a Markov chain ({X,} is
P{X(t )%, K () oxa,eeee e, X(8))=x,] = P[X(t.,)=x,, X(t,)=x,]

wvhere the rhs is the (one step) transition probability. Given the
initial distribution P{X, =j] and the transition probabilities, we may
determine the probability of being in various states at time n.

The Markov chain is HOMOGENEOUS if the transition probebilities are
independent of time. We may then define the m-step transition
probability

Py = P[Xum= 3!Xe=1i], (n arbitrary and m=1,2,...)
3.4.2 Homogeneous Markov chains

A Markov chain is IRREDUCIBLE if every state can be reached from
every other state. Define

ff" = P[first return to E; occurs n steps after leaving EJ]

-Q
-. P[ever returning to E;] = f; = 2:1‘3“
ns

State E; is RECURRENT if f;= 1 and TRANSIENT if £<1. If it is only
possible to return to E;after an integral multiple of ¥ steps, then E is
PERIODIC with period & ; if ¥ = 1, then E;is APERIODIC.

For recurrent states E;, we define the mean recurrence time of Qjas

-
)
H" = zn ff“

nel

If M;= , E; is RECURRENT NULL; if M; < v, E; is RECURRENT NONNULL.

)
We now introduce two important theorems. Let 7Tf be the probability
of finding the system in state Ej at the nth step, i.e.

(LY

T = P[x. = 3]
Then:
Theorem 1 - The states of an irreducibdle Markov chain are either all
transient or all recurrent nonnull or all recurrent null.

If periodic, then ell states have the same period ¥ .

A probability distribution gi is STATIONARY if

13
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(o)
M. = P = 11;'(" - P for all n.
Theorem 2 - In an irreducible and aperiodic homogeneous Markov chain,
the limiting probabilities (equilibrium probabilities)

(n)

alvays exist and are independent of the initial distribution.
Moreover, either

(a) A1l states are transient or all states are recurrent null,
in which cases T = 0 for all j and no stationary distribution
exists, or

(b) all states are recurrent nonnull and then T >0 for all j, in
which case the set {TT;] is a stationary distribution and

TR AL S AR NIV VL AR Y

Calalel

T =
In this case the T':, are uniquely determined by
‘_E-rr{ = 1 3 Trj - {Zﬂ;p‘)‘
A state E; is ERGODIC if it is aperiodic, recurrent and nonnull; i.e.
f; =1, M; <o, ¥=1, If all states of a Markov chain are ergodic, then

the chain itself is ergodic. Thus a Markov chain is ergodic if any of the
following apply:

(1) s (T - {1 )
(ii) the chain is finite, aperiodic and irreducible

;

(i4i) the set of linear equations in theorem 2 has a nonnull solution
for which
Z Tl < oo
J

Define the pr bability vector M = [1G, 7, Th,.....]. Then we may write
the theorem 2 equations as

M=-1Tr>r ; ‘,i‘n’;- 1 (3.1)

where P = [pg] is the transition probability matrix. There is a linear
dependence in the set of simultaneous equations for T, so the probability
conservation condition in eq.(3.1) is needed to determine the complete
solution.

N-:
o
' &
::‘_'- Ve now consider the TRANRSIENT distribution Tl" = [ﬂ;‘."ﬂ;’:’ cese ]
X We have
- MY % o T (n=1,2,....0) (3.2)
.‘ .
E‘Q 3.4.3 Inhomogeneous Markov chains
-'\
'.t._r_‘_ The results for a homogeneous chain may be generalised to the case .
:-:fs of an inhomogeneous chain, where the transition probabilities depend on
o time. Define

Py (mn) =  P[X,=3iX.=i]

vhich is the probability that the system will be in state E;at step
n, given that it was in state E;at step m. In going from step m to n,
the system must pass through some intermediate state E, at some

ol
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intermediate time q. Thus
pi; (m,n) = ‘Z PlXa =3 K¢k Xp=i]
- g P[Xg=k!Xa=i] P[Xo=3!X0=i,Xq=k]

by definition of conditional probability. Using the Markov
property, we obtain the CHAPMAN-KOLMOGOROV (CK) EQUATION

p;; (myn) = ?m (m,q) paj (q,n) (m & q¢m) (3.3)

If we define the matrices P(n) = [p;(n.n¢1)] and H(m,n) = [pg
(n.n)], the CK equation becomes

H(m,n) = H(m,q)H(q,n)

The FORWARD CK equation is obtained by setting q=n-1:
H(m,n) = H(m,n-1)P(n-1)

The solution is
H(m,n) = P(m)P(m*1)eece..P(n-1)

As an anslogy to the homogeneous case, we have

,n(ufl’ - Trln,P(n) with solution -rr(“'i 11'“'?(0)?(1)....?(!1)-

The forward CK equation in this case is
dp;(s,t)/3t = qj; (t)p; (s,t) “Zj'q.,,- (t)pa (8,t) (3.6)

vhere q; is the rate at which the system moves from state E; to E;, given that
it's currently in E;. We define

P(t) = [pij (t,t+at))

Q(t) = lim (P(t)-1)/at (the transition rate matrix)
F 34 g

H(s,t) = [p; (s,t))]

We may write the forward CK equation as dH(s,t)/dt = H(s,t)Q(t), s¢t.
The CK equation for the equilibrium probabilities is

ath(t)/at = q5 (OM(t) + “zj(hj(t)“rt(t) (3.7)

Eq(3.6) describes the probability of the system being in state E; at time t,
given that it was in E; at time s. Eq(3.7) merely gives the probability that
the system is in state E; at time t; information about the initial state is
contained in TT(0).

For the homogeneous case, we have Q(t)»Q, H(s,s+t)=->H(t). The limiting

distribution is given by )
= ; 3.8
4 (
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3.6.1 The Chapman-Kolmogorov equations

Elementary queueing theory is built upon the theory of birth-death
processes, vwhich is the special case of a Markov process in which only
the transitions Ep-»Ei,and EgeEp,are allowed. We shall now derive some
properties of a birth-death process in the language of queueing theory.
Consider a queueing system which increases or decreases its population
by means of arrivals and departures respectively. Define

AA = arrival rate when system contains k customers
SAs = service " " . " »
In terms of the transition rate matrix Q, we have

Quaer = A Qb = gk
Since JZ P;; (s,t) = 1, then by definition of Q we have ‘Z qy (t) = 0.
This implies that qu = — (Ma+ As)

Finally, qje = O for |j-ki>! by definition of the birth-death process.

We assume that the queueing process is a homogeneous
continuous-time Markov process on the discrete states 0,1,2,...., that
arrivals and departures are independent(i.e. the Markov property), and

Plexactly one arrival in (t,t+4t) !k in system] = A.At + o(At)
(3.9)
Plexactly no arrivals in (t,t+at) k in system] = 1 - AAt + o(At)

We obtain two more equations by substituting “departure” for
“arrival” and a4 for Ay . Note that we have assumed that the probabdbility
of multiple events is o(At). Define

gﬂt) = probability that system contains k customers at time t
Applying eq(3.7) with Th(t) = B(t), we have
dB(t)/at =  -(Aem)R(t) + A R (t) +u B (t) , k )1

aR(t)/dt = = AP(t) + s P(t) ’ k=0

(3.10)
A simpler method of obtaining eq(3.10) is to consider the state-
transition-rate diagram (Fig. 1). The equation
(Effective probability flow rate into E,)
- (Flov rate into E,) - (Flow rate out of E,)

immediately yields eq(3.10). This is an example of GLOBAL BALANCE, about
vhich more will be said later.
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3.6.2 Poisson arrivals

Consider a pure arrival system with A; =\, Mi= 0. Then the solution
B(t) = (Atltexp(-At) / k!,

of eq(3.10) is

i.e the Poisson distribution. The mean and variance of this distribution
are both equal to At, and G(g) = exp[ At(z-1)].
Let ¥ be the random variable describing interarrival times. Then:

ACt) = 1 -P[Bt] = 1 -B(t) = 1 -exp(-At) , t>0
a(t) = aA(t)/dt = Aexp(-At), t»O0

This is the exponential distribution for interarrival times. We have
1

E[t] = 1/x ; E[(}] - 2/n ;g -
3.6.3 Postscript

It is a sad fact that the solution of eq(3.10) for even the simplest
interesting queueing system (i.e. M/M/1, with Ai=A , & =4 ) is far too
complicated to be useful [2] The diffusion approximation is therefore
preferable for 2xamining dynamic behaviour, although some attempts have
been made to apply queueing theory to the transient behaviour of the M/M/1/K
queue [9]. The power of queueing theory lies in its ability to describe
equilibrium distributions.

3.7 Queueing systems in equilibrium

We now obtain the general equilibrium distridbution for a single queue.
Let
Pp = ‘1}3 B(t) '13 dpt)/dt = ©
vhere B(t) is as defined in eq(3.10). Setting A = Miie= pos = 0 (i=1,2,...)
in order to avoid writing the k=0 boundary equation separately, we obtain from
eq(3.10) A=l
P * p._ZA;/,u-cﬁ ' k>0
10

P. = [1+ S TTN,«;«] (from conservation of probability)
‘:‘ i:o

We are considering equilibrium distributions and thus are interested only in
the ergodic case; this occurs if there is a k.3 O such that Ayx,< 1 for ell
k ¥ ko.

We now consider some specific queueing systems. Define 2= A/« , N as
the average occupancy of the system, and T as the average system delay.
M and G represent the Markovian and general distributions respectively.

(a) The M/M/1 queue
Choose Ax=A, Me=pu . For ergodicity, < 1. We have

e (p)hs B o= p/1p) 3 T = /(- A)

(b) The M/M/m queue
Choose Au=st, Me = ki (0€k¢m) or mu (mg k)
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& | Por ergodicity, Nﬂ/l. ¢ 1. We obtain Erlang’'s C formula for the i
- probability that an arriving customer must join a queue, i.e. Bt
of oh g
. Y, 0
:- P[queueing] = b Pa = C(m, A/u) 4
.7 kson ~
& .
N (c) The M/M/1 /K queue ~
L Ve must "lose” any customers which arrive when the system contains K
: customers. Choose Au= A(k <K) or O (k%K) and = u. i
K- We obtain . by
o = [O-p)/(-pFD]p% 06 Kk<K 2
:: (d) The M/G/1 queue -
v Although the analysis of a queue with general service-time distribution L
o requires techniques we have not yet covered, it is convenient here to . ;:
ol give the POLLACZEK-KHINCHIN FORMULA for the average occupancy of an M/G/1 t
¥ queue: (5. ¢ N
‘ N o= g+ pr(146)/2/(1-p) he
. vhere C:’ = 0;‘//«‘ , where O’ is the variance of the service time. 4
o7 Z§
5. :.-
;: 3.8 Residual life B
. ‘-.
N The queueing systems M/G/m and G/M¥/m are more difficult to analyse. "
.Y Consider the M/G/1 system for example: as the departures do not now x
3 constitute a “"memoryless" process, the state description must include 5
3 the time since the most recent departure as well as the number of N
customers in <the system. We can consider the set of departure times as p
. defining an IMBEDDED Markov chain, where now the <transition ; '
[, probabilities are not merely of the birth-death type since many arrivals Bal
ﬂ may occur during a departure period. We must deal with the case of an E
oy arriving customer finding a partially served customer in the service ¥
ﬁ facility. We <thus introduce the important concept of RESIDUAL LIFE. 49
b~ Consider an arbitrary interdeparture time PDF 51
: Fx) = P[Tm 'Tl‘ X] ’ "
¢ e
3 vhere Ui is the departure time of the kth customer. Then the pdf is given by t
foei f(x) = dF(x)/dx. Take a randomly chosen instant, t (Fig. 2). The time Y ;
' until the next departure is the residual life, with PDF E(x) = P[Y{x] and v
(. pdf f{x). Let the selected lifetime X have PDF E(x) and pdf f{x). Then .
. R
5 (Probability that interval of length x is chosen) *1
- ~
ye ©o¢ (length of interval) x (relative occurrence of interval) N
. 5
@ i.e. P[x<X¢x+dz] = gfx)dx = x f(x) dx / =,
o vhere 1/m, normalises the probability and m, = E[(%-%.)"]. ) \}
N Thus: NS
": &(x) = x f(x) / nm (3.12) 'I’
3.
@ FNow it's obvious that P[Y‘yix-x] = y/x for OLy$x. =
3’ S. PlycYcy+dy, x<X¢x+dx] = (dy/x) (xf(x)dx/m) = f(x)dydx/m, \
&
,: Integrating wrt x: i




fy) = (1-F(y)) / m (3.13)

We may use Laplace transforms to obtain the moments of this distribution.
In particular:

E[Y] = m,/ 2m, (3.14)

3.9.1 Burke's output theorem

Our results so far apply to single queues. The question arises as
to what relevance queueing theory has to a NETWORK of queues, in which
the output of one queue becomes the input of another.

We consider an M/M/1 queueing system with Poisson arrivals at rate
A and an exponential server of rate & (Fig. 3). We wish to find the PDF
D(t) of the interdeparture time distribution which feeds the next node
in the network. Let A(s), INs) and Bs) be the Laplace transforms of the
interarrival, interdeparture and service time pdf's respectively. When a
customer leaves the node, either a second customer is in the queue or
the queue is empty. In the first case, D(t) is equal to B(t), s®o

pls) !node nonempty = BTs)
If the node is empty after the first customer departs, then

(total delay) = (time until 2nd customer arrives)
+ (service time for 2nd customer)

As the variables are independent and identically distributed, the
Laplace transform of the sum is equal to the product of the Laplace
transforms of the individual times (see sections 2.2 and 2.5);

D’(s)lnode empty = NOEOK [A/(s-tA)][/t/(syQ]

For exponential pdf's, the probability of a departure leaving
behind an empty system is the same as the probability of an arrival
finding an empty system, i.e. 1-f » where o = A/x. Thus:

If(s) = (1-f)D‘s)Inode empty + /D?s)}node nonempty = A /(8+A)
D(t) = 1 - exp(-At) = A(t)

Thus the Poisson stream is in no way affected by its passage
through the node.

It can also be shown that the split and join of Poisson streams are
themselves Poisson. These are important results, as they imply that the
individual queues in a network of M/M/1 queues may bDe analysed
independently of one another. This decomposition is essential for a
tractable analytic model.

3.9.2 Open networks
Consider an arbitrary open network of queues with N nodea. The ith

node consists of m exponential servers each with parameter &;, and
receives Poisson arrivals from outside the system at rate ¥;. Customers
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move from node i to node j with probadbility Iy or leave the system with

probability
N

1 - Zrzi .

Y]
Feedback (i.e. n;>0) is allowed.

The total arrival rate A; to node i is the sum of the Poisson
external arrivals and the internal arrivals (wvhich are not necessarily
Poisson because of feedback), i.e.

N
Av = U e Jg)grj; (i =1,2,.00.,N) (3.15)

or, in matrix form, A= Y+ AR, where Az [A,Arrec...,A].
Each node must satisfy A< mos; for ergodicity.

Jackson [10] showed that each node i behaves as if it were an M/M/1
system with a Poisson input rate A;, even though the inputs are not
Poisson in general. Let k;be the number of customers in node i. Then the
equilibrium probability distribution factors into the product of the
parginal distributions, i.e.

P(eigyeeeek) =  RUJR(K)eeeeeen(k)

wvhere each marginal distribution is the solution to the M/M/m
system. This result is known as JACKSON'S THEOREM.

3.9.3 Closed networks

A closed Markovian network contains a fixed number K of customers
and no external arrivals or departures are permitted. This constraint
introduces a dependency among the elements k;of the state vector, as
they must sum to K. By considering the balancing of probability flows
(section 3.6), Gordon and Newell [11] proved that

N .
Pigeeeesk) = (6T TT 417 gitks) (3.16)
where N .
W o) ~ S IT A goq)

(i1) 5 are defined by = A/4A3 , where the A; are the solutions to
A=AR (to within a multiplicative constant).

kiom
(111) (k) = K (k¢ m3) or m! mg (k) m;)
[
(iv) A is the set of state vectors k for which Z‘ k; = K.
-
Consider the quantities ©O; /m; , and suppose that there exists a
largest ratio /./u » 8ay. Then it can be shown that an infinite number
of customers will form in node k, which is the "bottleneck” for the

network, as Kage. In this limit, a product-form solution exists for the
marginal distribution

P(Kkgeoeeonsk) = RODBK)erenplk)
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The most general model to date of a product-form queueing network
is that of Baskett et al [12]. They generalise the models of the
previous Section to include different types of server and multiple
customer classes. The four types of service centre can model central
processors, data channels, terminals and routing delays respectively.

To obtain the Jjoint equilibrium distribution, we must solve the
forward CK equation with d4P/dt=0, or, equivalently, solve the global
balance equation

Z P(E;) [rate of flow from E; to E;] = P(E;) [rate of flow out of E;] (3.17)
all spotes

& for all states Ej. With a complex state description such as that in
[12], the global balance equations become difficult to solve. We can
obtain sufficient conditions for global balance by decomposing the
global balance equations into a 1larger set of smaller LOCAL BALANCE
equations. For each state E;and node k, we equate the rate of flow into
E; by a customer entering node k to the rate of flow out of E; by a
customer 1leaving node k. Thus each global balance equation is & sum of
local balance equations. The local balance method is used to determine
the joint equilibrium distribution in f12]: a discussion of local
balance is given in [13].
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= Pig. 1 State transition diagram (Section 3.6.1)

3 PFig. 2 Residual life (Section 3.8)
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4. AFPLICATION TO COMMUNICATIONS NETWORKS

7
»
»

4.1 Introduction

LYY 4 -
r
-

D emeeeceemeee
-\-h.
N 4.1.1 Real networks
R . .
\-;
A A communications network consists of a subnet (containing data
() channels, packet buffers and nodal processors) and hosts which feed
s packets into the subnet. Because of resource sharing, queues may build
- up for the data channels. The progress of packets in the network may be
':: governed by a number of protocols.
-I“_J
Y Preallocation of resources (e.g. circuit switching) is a safe but
_ wasteful method of sending messages. Therefore in a store-and-forward
SOAS network, only a channel and a buffer st each end of the channel are
2o allocated for each packet. If the packet is successfully received at the

]
"A

P, ¢ 2, .
A s

next node, an acknowledgement (ack) is sent to the previous node. If no
ack has been received at the end of a timeout period, the packet is

retransmitted.

()

j{j The datagram and virtual circuit subnet services are now
v{:. introduced. The datagram traverses the network as an independent entity;
[ virtual circuit packets belong to a "virtual channel” connecting sources
A and sinks and are usually characterised by the same routing behaviour.

The efficient utilisation of resources depends upon the routing
'qj algorithm ani flow and congestion control. Performance may be defined by
:A average throughput and transit delay.
v
Z 4 4.1.2 Assumptions
AN
i) In order to apply the theory of product-form queueing networks

)

-
'
2 2'h

[14.15], certain assumptions and approximations must be made. Adaptive
routing, message priorities and loss of packets caused by full duffers
cannot be treated becsuse of statistical dependence between the elements

2

':{v of the state vector.
>
L ¢ Most models of communication networks assume exponential arrivals
e and departures. Additionally, Kleinrock's INDEPENDENCE ASSUMPTION (3]
:ﬁ' must be invoked: every time a packet joins a queue, its length must be
Fo redetermined from the exponential pdf associated with the service
facility. This assumption removes the statistical dependence of
L - transmission times at the channels. It is not a realistic approximation,
0. but this cannot be helped.
\
! If the average arrival rate of packets to a node is 4\, then the
y traffic intensity is given by @ -,\/,uc, where C is the line capacity of
N the next chennel and & is the reciprocal mean packet length.
? 4.1.3 Mean end-to-end delay in an open network [3)
' Let ¥ be the total average traffic rate offered to the network.
! This 4is split up among the various channels such that A; is the average
Y, rate to channel i (which has capacity C;). We may then define a traffic
R intensity @i- A&l,ac:at each channel. Assume there are M channels in the
@ network. Then the mean number of packets in the network is equal to the
0 sum of the mean queue lengths 7; at each channel; if T is the mean
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end-to-end delay for an arbitrary packet, then by Little's law the mean
total number of packets is & T. Thus

M ” M v
Fr = 3® = Ip/0-p) = 2 Ay(uCi-A)
=4 =

izl
n
N 7"%M(AC;-A:) (4.1)

Ve may optimise line capacities by minimising T wrt the C;, subdbject
to some cost constraint. If the constraint is linear in the C;, then the
method of Lagrange multipliers may be used.

Moidsd ol B A Apr s CEB WL atsl

The full distribution for end-to-end delay along a path has also -
been evaluated [16]. In particular, the variance of end-to-end delay
along the path is

s = ci(1-p5)172 (4.2)
(e iguk['“ s

4.1.4 Closed networks

Closed networks with product form may be used to model end-to-end
flow control in a virtual circuit and permit-oriented (isarithmic)
global congestion control. The evaluation of the PARTITION FUNCTICN (or
normalisation constant) G(K) in eq(3.16) is a problem because of the
large computer time and storage required when there is e large number of
nodes. Another difficulty is that the A" are determined only to within a
multiplicative constant, so that incorrect scaling may cause underflow
or overflow.

There are currently three approaches ¢to the calculation of the
properties of & closed network: the convolution algorithm r17], the
mean-value-analysis (MVA) algorithm [18]. and the integral
representation and asymptotic expansion of the partition function [19].

MVA obtains mean quantities associated with a closed chain without
having to deal with the full product-form expression for the equilibrium
distribution. Consider a c¢losed cyclic chain of N exponential servers
with mean service times a (n =1,2,...,N) and a fixed number K of
circulating measages. Define

'E;(K) = mean size of queue n (including message in service)
Tn(K) = mean delay at queue n
A(K) = throughput of chain

The mean delay at queue n for a "tagged” message is the sum of the
service time Tw for the tagged message and the service times for the
average number of messages in the system when the tagged message
arrives. The ARRIVAL THEOREM states that in a closed exponential system
the state seen upon arrival instants has the same distribution as the
equilibrium distribution of the same closed system with K-1 messages.
Thus

TK) = T+ T (K-1) (n=1,2,00.,N) (4.3)
¥With the obvious equation i:(o) = 0, and the following expressions

(odbtained by the application of Little's formula to all N servers and to
each individual server respectively), we have a simple recursive

24
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solution for the closed exponential system:
N
AK) = K /3 T(K)
K(K) =  AK)TL(K)

MVA can be extended to include more general topologies than the
cyclic chain [18].

4.1.5 Homogeneous network models

Networks with message priorities or nodal buffer limits contain
statistical dependencies which do not allow a product-form solution for
the equilibrium distribution. A homogeneous network approximation may bdbe
employed, in which all nodes are identicel and perform identical
functions. This implies that all nodes are topologicelly equivalent, all
channels are of the same capacity, and all external offered traffic
rates are equal. Such models have been used to investigate networks with
priorities fzo] and nodal buffer management schemes [21,22].

4.1.6 The range of application of queueing theory

The model defined by eq(4.2) may be used to optimise non-adaptive
routing algorithms. The use of closed product-form networks for the
analysis of end-to-end flow control and isarithmic congestion control
has also been mentioned in this section.

We may investigate network components such as switches and
point-to-point 1links by applying directly 1local or global dbalance
conditions; the performance of buffer management schemes and
data-link-control (DLC) protocols may thus be evaluated.

4.2.1 A simple model with window flow control

Butto et al [23] consider two nodes A, B, where B acknowledges
packets sent by A. The timeout is represented by a feedback to A of rate
© ;: wvhen the timeout expires, all packets in queue Q are erased from Q
and placed in Q for retransmission (Fig. 4). The number of packets in Q
may not exceed the window size, M.

We assume an exponential arrival pdf with parameter A , and
exponential servers at nodes A and B with parameters o< and AB
respectively. The model is inspired by Ref 24.

The state transition diagrams are given in Fig. 5. The balance
equations may be solved by applying the z-transform

Q;(z) = E-P‘.oz{ (2} <1, OgxKN¥)

i=0

Once the probabilities Pii have bYeen obtained, it is easy to
calculate the average packet delay by Little's law:

-t o M
Average delay = Ao Z Z(hj)P‘-‘;

ise j.o
The graph of this quantity (Fig. 6) shows that the delay is

(4.4)
(4.5)
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sensitive to a certain range of window widths.

4.2.2 Retransmissione and stability [23]

W sas L la Te

Ve now investigate the instability that sets in when
retransmissions waste the available resources. Assume an exponential
distribution for the service time T, and let the timeout duration be T .
Then retransmission occurs if

Packet delay W > To= T-W,,

wvhere W, is the (constant) delay time for an ack. The average
traffic rate A offered to the channel is related to the original offered
traffic rate Ae by A=AgN, where N is the mean number of transmissions
for any one packet (Fig. 7). Now,

IR RN 1S WCARIUONS MY Sl

o
a'

ab
¥ = 2ip,
=l

vwhere P, = P[i copies sent (including original)]
= P[i-‘l failures] P[one success]
Now, P[success] = P[WT,) = E(T) (i.e. the PDF for W)
S [1; l:(’l‘o)] E(T)
Thus: A = AeZi[t - DT R - A/ ED,
where A, ie the throughput in steady-state conditions.

Using the standard queueing theory expressions for F.('P,), an
implicit equation for mean opacket delay W as a function of A,may be
obtained. The numerical solution yields the graph in Fig. 8, where the
instability is clearly seen.

4.2.3 The "send and wait" protocol

We now introduce a more general treatment by Fayolle et al [25] of
the send and wait protocol, which is a case of window flow control with
the window size set to unity.

Define the random variables X, Y and Z as the message transmission
duration (iid for all messages), the delay from the end of transmission
to receipt of an ack, and the waiting time for an ack if timeout T =ao,
respectively. Let L bYe the probability that a message is not
acknowledged (due to message 1loss or erroneous transmission). We may
define the PDFs

C(x) = P[x¢x] , B(x) = P[Y¢x] , A(x) = P[2gx] = B(x)(1-L) (x<ea)
or 1 (x=o»)

The totel transmission time T is typically made up as in Fig. 9. Define
D = P[ack not received before timeout] = 1-A(T) = 1 - B(T)(1-L)
If 2. is a random variable representing the total effective
transmission delay (including all the "send" and "wait" intervals) for a

message, given that it has to be transmitted n times before the ack
precedes the timeout, then

26




T
E[®) = nE[X] + (n-1)T + (1-D)°'_£ta(t)dt
where a(t) is the pdf of X.

The terms in the rhs of eq(4.6) represent respectively the average
total transmission duration, total timeout duration, and average time
before the ack arrives successfully on the nth attempt. Note the
renormalising of the pdf in the third term because of the restricted
interval (O,T).

The average effective total transmission duration is then given by
(] -0
E[?] = 2 EM] P[n transmissions] = éE[’KJD‘"(hD)
[zl a8

The timeout which minimises EP?] can now be obtained implicitly in
terms of a(x) and E[X].

It is dinstructive to obtain the distribution of T by calculating
the Laplace transform f(s) of the pdf f(x) of T . We have

T =« nX+ (n-1)T +2 (0¢2<T)

Let i‘—[Q] denote the Laplace transform of the pdf of the random
variable Q. Then the convolution property for the sum of independent
variables (Section 2.2) yields

LM = &£ax]d[(n-1)7)d(2] (062<T)

Fow, P[nx¢x] = P[X¢x/n] = 6G(x/n)
oo & [nx] = J;:xp(-sx)g(x/n)d(x/n) - iexp(-sy)e(y)dy = Hosn)

The above refers to retransmissions of the same message, which are
obviously not independent. If the durations X were independent, we would

have L [nx] = [#s)]".

We also have
d[(n-1)7] = J::xp(-sx)f[x-(nd)'r]dx = expl-s(n-1)T]
2721 = Xe)/(1-D) (0¢z<¢T

Finally,

[ -]
Lrl - 2 onim
vhich may be differentiated to give the moments of the PDF of T.

The above analysis is completely general and does not depend upon
the specific distributions G(x) and B(x). Fayolle et al then consider
the effect of the protocol on the buffer queue behaviour by assuming en
exponential arrival process for G(x) and using the imbedded Markov chain
approach for the number of messages in the buffer. Results are given
[25] for the optimal timeouts under these conditions.

Another approach to the analysis of the send and wait protocol is
described by Reiser [8]. Both ends of the link may transmit and receive
messages; in order to reduce the number of states to be considered,
saturated (nonempty) queues are assumed. The THROUGHPUT-LIMIT THEOREM
states that the maximum arrival rate leading to a stationary solution is
also the maximum achjevable throughput; this implies that the maximum

an

(4.6)

(4.7)

(4.8)

2 TV
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throughput may be determined without having to consider those states
containing an empty queue. Because of saturation, no acks may be sent
until both ends of the link are ready, and so the acks are synchronised.
The process is depicted in Fig. 10. TW represents the state in which a
message is being transmitted over chanmnel 1 whilst channel 2 is waiting,
etc.

We assume that message transmission rates on channels 1 and 2 are
exponentially distributed with parameters AL, M, respectively; ack rates
on bYoth channels are exponentially distributed with parameter din. The
state transition diagram is given in Fig. 10. The flows from state TT
deserve explanation. If 1, liare exponentially distributed transmission
rates with parameters 44, respectively, then the variable min( 1,.1,) is
also exponentially distributed with parameter A, +Ms. Similarly,

P[l, ‘]1] '}‘:/(/“c */-‘z) .
Thus the flow from TT to TW, for example, is given by

(/"l'?z) Plll‘ll] = /“-z .

The balance equations for the state transitions are easily solved
to yield the maximum throughput in terms of A, , L4 and A4, -
(Alternatively, as the system can be thought of as a closed exponential
one with a single message, we may apply the mean value analysis of
Section 4.1 with K=1.)

4.2.4 The HDLC Protocol

Bux et al (27] apply a heuristical method to the analysis of the
HDLC protocol. The first two moments of the PDF of the effective
transmission time are evaluated approximately by making independence
assumptions and using the renewal formula (eq. 3.14). The mean transfer
time of messages, assuming an exponential arrival distribution at either
end of the link, is then given by the Pollacgek-Khinchin formula for the
M/G/1 queue (Section 3.7).

Labetoulle et al [28] consider the case of saturated queues only.

4.3.1 Introduction

Some difficulties arise in the performance evaluation of buffer
management strategies because the equilibrium probadility distribution
for a queueing network with finite storage is unknown at present. The
standard approach is to analyse the behaviour of a single node by means
of queueing theory and then assume flow conservation (perhaps in a
homogeneous network).

4.%.2 Restricted Buffer Sharing

Irland [31] analyses a policy in which R classes of traffic are
accepted by R output channel queues. Each class r has exponential
arrival and server rates with parameters X'.Atrrespectively. If there is
a total of N bduffers in the node, then the strategy is to limit the
number of buffers k, occupied by packets of class r to M( NL

. - |
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The easiest way to find the equilibrium probabilities is to
consider the local balance equations:

AMeP(Kpeeoditt,endde) = AP(K,ocopkyeeek)  for r=1,2,...,R
L]

The solution is P(k) = C"'Tl; ,o," (for feasible k only),
A &
where C -*‘“Z“QE(A,' and py = Xr/,ur .

The normalisation constant C is difficult to evaluate because of
the restriction on the states; Irland achieves this by a convolution
approach. The nodal blocking probability P[k,-H] for cless r packets can
then be found by numerical means; the optimal value M¥of M which
minimises this blocking probability turns out to be

¥ «~ N/ R

Irland also finds the throughput vs. load behaviour for various
other strategies such as "no sharing”, with M = N/R, and “"unrestricted
sharing”, with M=N. The worst congesion occurs for the unrestricted
case, as expected. The behaviour of a network of nodes is not
considered.

4.3.3 A simple model with congestion [29]

Before describing other results in this field, it is useful to
consider the fundamental model on which they are based. A node with one
input and one output link has a finite number N of buffers; there are
exponential offered arrival end departure rates with parameters o\,,u .
The actual throughput ¥ is 1less than A because of the effects of
blocking at the next node. Let the blocking probability be B (Fig. 11).

Assume that the blocking probability is the same for the next node
in the network (i.e. a homogeneous network). The effective utilisation,o’
is given by

P’ = Alm/(1-B)
From queueing theory, B = (1-70'»0’”/(17p'”*5 (see Section 3.7)

Then the equation ¥ = A (1-B) is an implicit one for ¥ (the
throughput) as a function of A (the offered traffic rate). The solution
yields the congestion curve of Fig. 12. It must be noted that flow
balancing arguments have been used ¢to obtain a stationary blocking
probability, although the system is not stationary [8].

4.3.4 Lam's model of a store-and-forward node [30)

Lan's model is an enhancement of that given above. He constructs a
product- form queueing network model of a node, with different classes
of ¢traffic routed to several output links with Markovian transition
probabilities. Acks and timeouts are represented by random delays (i.e.
infinite-server "queues"”, which support product form). Packets destined
for node j are routed to the timeout box with probadbility Bjor to the
ack box with prodadbility 1-Bj, B;is thus the blocking prodbability at node
3. The acked packets are sent to the finite buffer pool.

The equilibrium distribution for the node is given by t+ standard

v * g o o v o
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open network solution. We construct a network approximation by assuming
that the total flow into any service facility is equal to the flow out
of it. (N.B. this is not a homogeneous network assumption, as the
blocking probabilities here are not assumed to be the same for each
node.) Define the row vectors X , S as the throughput and external
offered traffic rate respectively, and let P be the node-node routing
probability matrix. Then by flow conservation

Y- s+ ¥p, e ¥+ s@-p°

The actual arrival rate A (including retransamissions) is given by
an argument similar to that in Section 4.2:

M
Ai = Z%Ri /(1 - B
Substituting this in the equation B;= P[all buffers are filled]. we

obtain a set of nonlinear simultaneous equations which can be solved
numerically (by the Newton-Raphson method, for example). The equations

‘Y are of the form

\.'

AN B = £:(B

Y

O, The dependence of B; on the blocking probabilities B;(j#i) is
v brought about by the dependence of the normalising constant on the B;.
A

}:4 4.%.5 Input buffer limiting

T

3‘3 Lam and Reiser [21] embed Lam's model of a node in a homogeneous
SN network in order to study the performance of an input buffer limiting
‘ mechanism. We shall ignore the nodal processing and acks with timeout
F pe and consider only one outgoing link queue in order to concentrate upon
. the essential characteristics of the buffer limiting method.

‘:Z}-f Two types of traffic enter the node: input traffic from a local
X host and transit traffic (i.e. that whic hes already passed through one
) or more nodes) from the rest of the network. The traffic is considered
2% to be exponential with parameters X,and A,for the input and transit

traffic respectively (Fig. 13). Because of blocking ceused by the finite
storage, the average throughput is given by % and ¥, for input end
transit traffic, where

2,

v
(A

\J'
B
%= MO -B) = AMi-By)
3-\: By and Bpare the blocking probabilities for the traffic types. In a
"‘l\_ homogeneous network, these blocking probabilities are the same for all
e nodes; moreover
.SI
o Xr = Tz
‘.-:"
. where T is the average number of hops traversed by packets in the
S network. This equation merely states that transit traffic is generated
e by input traffic at other nodes.
NN
..\ In order to alleviate congestion, we do not allow input packets to
“~ use more than Ny <N buffers, whereas transit packets may use a2ll N
:-: buffers. Bz and By may bde found by an iterative method; using these
" values, a numerical approach reveals the following rule of thumd for the
‘;" value of the ratio Ny/N which maximises throughput:
A
Q= NN & %/(%+%) ( =1/(1+%) for a homogeneous network)
N
o 30
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N Kamoun [22] has considered a slightly different buffer limiting
N mechanism in which no input traffic is accepted if the total number of
SOEN filled bduffers is equal to Ny (vhether filled by input or transit
~:f' traffic). The choice of a torus network allows him to evaluate W

explicitly. The optimal value of Ny in the torus network is then
calculated by numerical means.

4.4.1 Introduction

e In order to evaluate the performance of an end-to-end flow control
: scheme or to calculate parameters such as the average end-to-end delay,
a useful approximation is to consider the tandem link (i.e. the set of

nodes and channels defining a virtual circuit) in isolation from the

/ r
) l'u '
LA P MR ] SO

Aﬁ: rest of the network. The applications of open tandem links to the N
b calculation of the first two moments of the end-to-end delay .
e distribution and of closed multichain networks to the evaluation of N
:3; window flow control are reviewed comprehensively by Lam and Wong
[14,15].
:2: 4.4.2 End-to-end flow control in a tandem link
T The most important model is that of Pennotti and Schwartz [z2].
- They consider a tandem link embedded in & network. The traffic passing
‘ through the nodes defined by the link may be classified as link traffic
. and external traffic. In order to obtain a tractable model, we must
AN assume that the external arrivals occur independently of the movement of
o the 1link traffic and occur independently at each node along the link.
J:} These assumptions decouple the tandem link from the rest of the network,
. apart from the effect of the external traffic on the occupancy of each
atre node in the link. The tandem link is shown in Fig. 14, together with the
link traffic (average rate Ao ) and the external arrivals to nodes
o 1,2,....,M (average rate A;, i=1,2,...,M).
.ib A useful measure of congestion is the link-loading factor, L, which
,; relates the performance of each node without 1link traffic to the
) performance when link traffic exists. Define
E;% T; = mean queueing time for external packets at node i in the
" presence of link traffic
;" T.i = mean queueing time for external packets at node i when
® ' there is no link treffic
e Then L is defined by
-.:t*. M - )
& L= (AT ZM (- no/ma)
“e, -
('
o N - S
- - (ZA) )"A;[ (%;- ;) /E) by Little's law
S iz

' vhere T; is the average number of external packets in node i in the presence of

ﬁg link traffic, etc. Standard queueing theory yields

o

oy -—

) m; = AN/ (/R'Ai) , as there is no link traffic in this cese.
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L measures the link congestion as the external packets see it, but
as they are themselvs link packets (on other links), L is a reasonable
measure of congestion.

The application of end-to-end control affects L by changing the m;.
Let the window size be N; then the open tandem link of Fig. 14 is
replaced by a closed chain with N cycling link packets. An extra "node"
with serving rate A¢is introduced as shown in Pig. 15. The effect of the
flow control on external links (and thus on the external average arrival
rates A;) is ignored.

Pennotti and Schwartz solve this system by constructing the global
balance equation. It is instructive to see how this is done. The state
vector is of dimension 2M and consists of the numbers of link and
external packets at each node i, denoted bdy n;and m; respectively. The
number of link packets at the new artificial node depends on the numbers
ny (i=1,2,...,M) because the link system is limited to N link packets,
and so must not be included in the state vector.

The global balance equation [i.e. flow out of state (n,m) = flow
into (n,m)] is given by

" M
[1\.+z A; +_Z—,a.-] P(n,m) (1ink arrival at 1, external arrival at i,
s - sl external departure at i, link departure at M)
= AJP(n,-1) (1ink arrival at 1)
"
+ S AP(m;-1) (external arrival at i)
sel
M

+ 65 [(n;+1)/(n;+14m; );P(n;+1,n,,,-1)  (1link movement from i to i+1)
+ [(ng+1)/(ng+14m, ), P(n,+1)  (1link departure from M)

()
+ ‘f [(m‘.+1)/(n;* m.-ﬂ)]ﬂ;P(n;ﬂ) (external departure from i)
=(

The state (m;-1) is shorthand for (mym,.es My =1,cce,MyinyNpecc,ny),
etc. The oprobability of infeasible states is taken to de gero; this
takes care of the boundary equations. Kote that a careful definition of
.the service rate on the rhs of the balance equation is required: if we
take the fourth term on the rhs, for example, the effective service rate
for the link packets at node M is the original service ratesumultiplied
by the ratio of the numdber of 1link packets to the total number of
packets at node M. This partition is not necessary on the lhs of the
balance equation, as we do not care whether a link or an external
departure changes the state from (p,m).

The solution of the balance equation is given by the BCMP
expression for a closed product-form network [12] (although Pennotti and
Schwartz give an explicit calculation). The blocking probability B for
the tandem link is of course given by

B = P[:Z.n;-ﬂ].
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The results show that the effect of the external traffic on the
link traffic is equivalent to reducing each service rate by the
corresponding external arrival rate, i.e.M; du; - A: . These ad justed
average service rates are strictly correct only for (open or closed)
product-form queueing networks; nevertheless it is tempting to apply
them to models for which they are not really valid [8].

Another result of the model is
o= [AN/(-A;)] (1+83) ,

which may be substituted into the expression for the link-loading
factor, L.

The case of 1local congestion control may be treated in an
approximate way (no exact solutions exist for a network with blocking).
The control imposes a 1limit of N; link packets at each node i. The
external traffic is accounted for by adjusting the service rates
(although this is strictly valid only for the case of end-to-end
control). The 1link is then treated as a series of independent M/N/1
queues, with the Dbdlocking probability of each server being
(independently) equal to the probability that the succeeding queue is
full. The Mth stage is never blocked ani so the blocking probabilities
for stages M-1,M-2,...,1 may be found in an iterative way. The
throughput A is given by

/\ = A.P[first stage is full]
Ais required for the calculation of the blocking probabilities.

Pernotti and Schwartz derive some numerical results for a 3-stage
tandem link with all service rates equal to A . They obtain graphs for L
vs. fo = JLLAL which show that both types of control become important in
relucing the congestion L for large values of & . Optimal control
parameters (such as the window size, N) may then be selected.

Chatterjee et al [33] have extended the above model to include
random routing.

4.4.3 Closed multichain networks

The Pennotti and Schwartz model of window flow control employs the
approximation that the network (excluding the tandem link itself) is
open. Reiser [35] considers a more reslistic model where the network
consists of a set of interconnecting closed chains with different window
sizes. The BCMP solution for a closed network applies, but as usuel the
normalising constant is difficult ¢to calculate for a large network.
Reiser instead uses mean-value analysis, as the arrival theorem applies:
an arriving packet in a closed multichain queueing network will observe
the equilibrium solution of the network with one less packet in the
arriving packet's chain.

Pujolle and Spaniol [36] make use of a simplified version of the
Reiser model +to assess the relative performance of datagrams, virtual
circuits and a hybrid implementation in a communications subnet. A
geometrical distribution is assumed for the number of packets in a
message. A virtual circuit with window size N is approximated by N
elenmentary virtual ecircuits of unit window size, so the analysis is
simplified.
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4.4.4 Optimum window size

The preceding models require numerical analysis for their solution.
Kumar [34] congiders a simple isolated open tandem link model in order
to obtain the optimum window sigze in an analytical way. The link
consists of M nodes with service rates 4;(i=1,2,...,M). Kumar takes the
GENERALISED POWER P(A ) as his objective function, where

P(A) = A/ D(A)

A is the average throughput, D(A) is the average link delay, and 8
is an adjustable parameter. This definition of power recognises the
trade-off between throughput and delay that is characteristic of
queueing systems; the parameter /8 allows us to decide the relative
importance of the two quantities.

As the 1link is of product form, the average delays D{ A) at each

node are independent. Thus the total average delay is given by
M

M
D(A) = 5 A = 2 (u=A)"

The optimal throughput Af which maximises the power 1is then
calculated by standard methods.

By Little's law, the average number N of messages in the chain is

M
N = 2 ApQA)
3=l
It may, easily be shown that the optimel number Nof messages is
given by N = MA for the case where all service rates are equal. Kumer
claims that N* is a reasonable estimate of the optimal window size for
the link.

The propagation delay caused by the presence of a satellite link
can also be taken into account; as expected, it has a considerable
effect on the optimal window size.

4.4.5 Two-level control

Finally, the application of queueing theory to the analysis of a
network containing two levels of control [15,37] is worth mentioning. We
consider an open product-form network in which packets are classified
according to their source and destination. The first level of control is
ISARITHMIC (i.e. the total number of packets in the network is kept
below a certain value). The second level of control is of the end-to-eni
type; i.e. the number of packets in each class is restricted.

The problem is thus that of an open product-form network with
population size constraints. The calculation of the partition function
is tedious because the population constraints 1limit the number of
feasible states. The convolution method obtains numerical results for
average throughput and end-to-end delay. The isarithmic control is shown
to allow serious degradation in throughput for other classes of packet
wvhen the 1load is increased for any particular class. The additionel
inclusion of eni-to-end control results in a much superior overall
network performance.
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Pig. 4 Window flow control (Section 4.2.1)
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Fig. 9 Typical transmission time for send and wait protocol (Section 4.2.3)
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Fig. 11 Simple finite buffer model (Section 4.3.3)

Fig. 12 Results for finite buffer model (Section 4.3.8)
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Fig. 13 Model with input buffer limiting (Section 4.3%.5)

Y= x2(1-8) — N ¥
2 (1-B)

pr - e - - e e - e e e e e G-

">
SO
13

y

38




Fig. 14 An open tandem link (Section 4.4.2)
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5. HNETWORKS WITHOUT PRODUCT FORM VT
.

The tractability of BCMP type queueing networks [12] lies in the
fact that their Jjoint equilibrium probability distributions are of
product form, so that each queue may be treated independently of the
reast of the network (apart from the effect on the average arrival rate
caused by conservation of flow). This independence is essentially -
brought about by the adoption of exponential arrival and departure
processes (although Ref. L12] extends this to certain other types of
departure process) which are considered to be independent of each other
(i.e. Kleinrock's Independence Assumption). The memoryless property of
the exponential distribution implies that we do not need to include (in
the state vector) the time elapsed since the last arrival or departure,
and thus the departures from one queue are independent of the arrivals
feeding into the next queue. (This is not a very realistic assumption to
make for a communications network, but the analysis would otherwise be
too difficult.)

The above discussion leads us to believe that the presence of
adaptive routing, nodal blocking and message priorities will destroy the
product form, as they all introduce strong state dependencies between
the queues. In addition, any form of congestion control in a real
network will result in the buffering of blocked packets outside the
network until 1later. As this destroys the Markov property, this
situation cannot be handled analytically either. The equilibrium
distributions of networks possessing any of these characteristics cannot
(as yet) be obtained in closed analytical form.

This chapter describes attempts to analyse exactly networks with
blocking and message priorities.

5.2.1 Introduction

Chapter 4 contained various models in which the concept of blocking
was treated in an spproximate way. We concentrate in thies section upon
exact analysis of simpler systems. .

5.2.2 A simple cyclic queueing system

Gordon and Newell [38] consider a closed tandem 1link with M
exponential servers of average rateAl;and a finite maximum queue length
of size m;(i=1,2,...,M). The closed system contains N cycling customers.
If the number ngy of customers at the (i+1)th stage is such that njy =
M3e, then ¢the ith server's operation is suspended until a customer at
stage i+1 has completed service.

The global balance equation for the system is

]
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where € (n;) sl ,.ii‘;o » $i(n;) = 5,0 ‘f ::;::

and 2 n; = N.

The case M=2 is exactly solvable. The equilibrium probability
distribution may be denoted by PFR(n, ) (es n;is not an injependent
variable). The minimum and maximum values of n, are given by

k, = max(O,N-m,) . k, = min(N,m,)

Thus the number of possible states is R = 1+k-k, . The global balance equations
are

(st m)B(n) = 4 B(n+1) + 4 P(n-1) for k,+ 1 < n < k,
A Bk +1) = 4P (k) for n = k,+ 1
The solution is
B(n) = (M/pm P(k.) .

{(l-)"&“c)/[ (- (am)*] M pe
R af g

where

B(k) = [s (,m//.)“"“]

“"

For the case N > mym, ani 4, ¥ A4;, we see that the first stage must
always contain at least k{>0) customers, so the mean throughput A is

A - M:P[nﬂ‘ my] = M 1 - P}(k‘)]

Gordon and Newell also present an approximate solution for the
general case with an arbitrary number of servers.

5.2.3 A two-stage network with feedback and blocking

Konheim and Reiser [24] have formulated a model which reflects the
characteristics of a concentrator-processor combination. Packets queue
at the concentrator and are then sent to the main processor, which has a
small buffer (Fig. 16). When this dbuffer is full, the concentrator stops
polling the input lines.

Let i,j be the number of packets queued 2t the concentrator and
processor respectively (Fig. 16). The buffer in the processor can
accommodate a maximum of M packets; when it is full, the concentrator is
blocked. The feedback is represented by an independent probability ©
that the packet is returned to the concentrator queue.

The state transition-rate diagram is given in Fig. 17. To solve the
global balance equation we introduce the z-transform
C )

B(z) = & p;2t, 0K j&M and l2} g1 .
izo 4

This transforms ¢the linear system of balance equations into an
equivelent linear system in tridiegonal form which relates the functions
llj(z)] Unfortunately this simple system s8till requires a numerical
solution. An =analytical solution in closed form is available only for
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the case M=1.

5.% Priority in networks

27 S RANARGIM N Tl

5.3.1 Introduction

&
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Networks with message priorities, like those with blocking, do not
satisfy the local balance requirements and thus do not have product-form
solutions. Kleinrock [3] describes the calculation of the average
waiting time at a single M/M/1 queue with priorities. As with blocking,
the only exact solution for a priority network is for a two-node -
network.

5.3.2 Priority in homogeneous networks [20] _

We consider an open network consisting of N nodes with exponential
service rates A; (j=1,2,...,N) and P preemptive priority classes.
Exogeneous Poisson streams of priority class i arrive at node j with
mean rate A;(i=1,...,P; j=1,...,K). Class i is of higher priority than
class k if i>k. The routing is governed by a probsbility matrix which is
the same for 211 priority classes.

Let_the solutions of the traffic equations (section 4.3.4) be (e} },
where e} is the mean arrival rate of class i packets to node j. For
stability we must have

Ps
2e < M

The state is defined by {n}!, where n§ is the number of class i
packets at node j. We define the aggregate state variable m; by

4
m; = EE-n

hei

"y

= number of packets of class i or higher at node j

[

Now, R . N
Elnj] = E[m}] - E[m}“]

The mean delay (including service time) Di is given by Little's law:
J

D; = E[n}]/e} = ’Erm}] - Efm}“]] / e

In a homogeneous network, the service rate and the routing are
assumed to be the same for all priority classes. Thus the {m}} are the
same as would be obtained in a network where Aj; = 0 (1€k¢i) and all
remainihg priority distinctions ignored. This network is of product form
and 80 we may use the familiar M/M/1 formula W = 4\/(/4— -A ) for each

queue:
P

’
T t 4
Defining f,“ = es//t_,‘ , we then have

- ’ ’
D: - o - ..' - f
IR AR RVAURE ¥'8

This expression is applicable only 4if routing and service time
distribution are the same for all priority classes.
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5.3.3 An exact two-node inhomogeneous solution [20]

The model is of a full-duplex data link which transmits two grades
of messages (i.e. high and low priority) under a window flow control

o8 protocol. High- priority messages (and their acks) heve preemptive
a8 priority over their low- priority counterparts. The system is shown in
y Fig. 18.

;:j. Under exponential assumptions the state transition-rate diagram for
e the system is given by Fig. 19 (for the case N=3, M=2). The rate diagram
[ depicts the followinz information. For O<n<N, changes in m cannot occur.

If n=0, then m may decresse at node A; it cannot increase because no
low~priority message can be transmitted from node B. The converse
argument applies for n=N. Morris [20] solves the balance equations for
this system. The mean delay for each class of message may then be found
from the p(n,m) and Little's law.

ws O et e
O ..L'l."-‘.k'\\ ¢

A &
l.l..

AN

’- AN
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Fig. 16 A model with feedback and blocking (Section 5.2.3)
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Fig. 17 State transition diegram for blocking model (Section 5.2.3)
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Two- node priority network (Section 5.3.3)

Fig. 18

M lw -priority messages

~~
[
L4
[\
.
[Ta)
=
[]
Eal
+~
(3]
[ ]
(2]
~
A
|
(2}
]
el
[
[~
»
»
4
$
o
ord
[ ]
a,
|
O
G
[
[~}
o
ord
rey
o
[2]
[ =]
(1]
[ o
pes
(]
o
)]
+»
n

Fig. 10

19,

od,

45




R I
Fa¥ls 7’
-I'I.'..'..I

'q o,

T 2 2 * 2
O,
I MR Y

6. CONCLUSIONS

Most of the effort in the analytical performance evaluation of
communications networks has been restricted to the solution of the
equilibrium system by means of queueing theory or (more fundamentally)
the theory of Markov processes. This theory provides good results for
models of deta links and other smal]l systems, but is less accurate for
large networks because of the approximations necessary to preserve
product form. One approximation technique which leads to the analysis of
networks with general arrival and service distridbutions is decomposition
[39]. The diffusion approximation [31 is a useful tool for the analysis
of transient behaviour. As it is most unlikely for a communications
network to attain equilibrium, transient behaviour is extremely
important. Queueing theory is not a suitable framework for this sort of
analysis, as the time-dependent solution of even the simple M/F/1 queue
is 80 complex as to be useless [3].

Some attempts [40] have been made to analyse optim2l control end
adaptive routing in communications networks. As in queueing theory,
various unrealistic simplifications have to be made before the model is
tractable.

In summary, queueing theory has 8o far been the most important
method for the analysis of network behaviour. The next steps will
probably be in the following fields:

(i) Approximate analytical methods (such as decomposition) for the performance

evaluation of more realistic models.
(ii) The almost unexplored area of transient behaviour.

The need for such methods has never been more pressing.

46

Py el -

47 SR

2%a®a"s" Bl C 4T

._v

| S



%, Y %t

r
L

p— faml » ¢ »
I T A AR - . a s 84 P A
.Al.".l":.Al..lf }-'.'v;-}-}r‘ N

o

e
R I

b
P A RN

*

O

‘Y by
o

h ]

7 .

DO

\ 3 s
‘ g“l_’l.’l,".{'.f'.

SRR A

."\.O.l.l e
1'1'*.inlllv-n

@

Y

¥ eV

REFERENCES

(1] A.S. Tanenbaum, “"Computer Networks", Prentice-Hall, 1981.
[2] L. Kleinrock, "Queueing Systems, Vol 1: Theory", Wiley & Sons, 1975.

[3] L. Kleinrock, "Queueing Systems, Vol 2: Computer Applications”,
Wiley & Sons, 197€.

{4] L. Kleinrock, "Analytic and Simulation Methods in Computer Network Design",
AFIPS Conf. Proc., Vol 36 (Spring Joint Computer Conf., 1970).

{5] H. Kobayashi and A.G. Konheim,
"Queueing Models for Computer Communications System Analysis"”,
IEEE Trans. on Commun., COM-25 (1977), 2-29.

[6] R.R. Muntz, "Analytic Modelling of Interactive Systems",
Proc. IEEE, 63 (1975), 946-953.

[7] F.A. Tobagi, M. Gerla, R.W. Peebles and E.G. Manning,
“Modelling and Measurement Techniques in Packet Communication Networks",
Proc. IEEE, 66 (1978), 1423-1447.

[8] M. Reiser, "Performance Evaluation of Data Communication Systems”,
Proc. IEEE, 70 (1982), 171-196.

[9] T. Stern,
“Approximations of Queue Dynamics and their Application to Adaptive Routing
in Computer Networks",
Proc. Nat. Tel. Conf. (Dec. 1978).

[10] J.R. Jackson, "Networks of Waiting Lines",
Operations Research, 5 (1957), 518-521.

[11] w.J. Gordon and G.F. Newell,
"Closed Queueing Systems with Exponential Servers",
Operations Research, 15 (1967), 254-265.

f12] F. Baskett, K.¥. Chandy, R.R. Muntz and F. Palacios,
"Open, Closed end Mixed Networks of Queues with Different Classes of

Customers",
Journal of the ACM, 22 (197%), 248-260.

[13] K.M. Chandy and A.J. Martin,
“A Characterisation of Product-Form Queueing Networks",
Journal of the ACM, 30 (1983), 286-299.

[12] s.s. Lam and J.W. VWong,
"Queueing Network Models of Packet Switching Networks; Part I,
Performance Eval. (Netherlands), 2 (1982), 9-21.

[15] s.S. Lam and J.W. Wong, -
"Queueing Network Models of Packet Switching Networks; Part II",
Performance Eval. (Netherlands), 2 (1982), 161-180.

[16] J.W. Wong, "Distridbution of End-to-End Delay in Message-Switched Networks"
Comput. Networks, 2 (1978), 44-49.

47




S P e Ve T aNaaR
-

L A IR A 4

v asnicD

[17] M. Reiser and H. Kobayashi,"Queueing Networks with Multiple Closed Chains"”
IBM J. Res. Dev., 10 (1975), 283-294.

[18] M. Reiser and S. lavenburg,
“Mean Value Analysis of Closed Multichain Queueing Networks",
Journal of the ACM, 27 (1980), 313-322.

[19] Je. McKenna and D. Mitra,
"Integral Representations and Asymptotic Expansions for Closed Markovian o
Queueing Networks: Normal Usage”, .
Bell Syst. Tech. J., 61 (1982), 661-683.

« o AR AT

[20] R.J.T. Morris, "Priority Queueing Networks",
Bell Syst. Tech. J., 60 (1981), 1745-1769. >

[21] S.S. Lam and M. Reiser,
"Congestion Control of Store-and-Forward Networks by Input Buffer Limits",
Nat. Tel. Conf., Los Angeles (Dec. 1977).

[22] F. Kamoun, "A Drop and Throttle Flow Control Policy for Computer Networks"
IEEE Trans. on Commun., COM-29 (1981), 444-452.

[23] M.Butto, G. Colombo and A.Tonietti, "Packet Network Performance Analysis"”,
CSELT Tech. Rep., 9 (1981), 45-58.

[24] A.G. Konheim and M. Reiser,
"A Queueing Model with Finite Waiting Room and Blocking",
Journal of the ACM, 23 (1976), 328-341.

[25] G. Fayolle, E. Gelenbe and G. Pujolle,
"An Analytic Evaluation of the 'Send and Wait' Protocol”,
IEEE Trans. on Commun., COM-26 (1978), 313-319.

[26] J.-L. Grange and M. Gien (eds.),
“"Flow Control in Computer Networks”, North-Holland, 1979.

[27] W. Bux and H.L. Truong, "HDLC-Controlled Data Links", in Ref. 26.

[28] J. Labetoulle and G. Pujolle,
"Modelling and Performance of the Protocol HDLC", in Ref. 26.

[29] M. Schwartz and S. Saad,
"Analysis of Congestion Control Techniques
in Computer Communication Networks", in Ref. 26.

(30] s.S. Lam, "Store-and-Forward Requirements in & Packet Switching Network",
IEEE Trans. on Commun., COM-24 (1976), 39%4-403.

[31] M. Irland, "Buffer Management in a Packet Switch",
IEEE Trans. on Commun., COM-20 (1978), 328-337.

[32] M. Pennotti and M. Schwarte,
"Congestion Control in Store and Forward Tandem Links",
IEEE Trans. on Commun., COM-23 (1075), 1434-1443.

[33] A. Chatterjee, N. Georganas and P. Verma,
"Anelysis of a Packet-Switched Network with End-to-End Congestion
Control and Random Routing",
Proc. Int. Conf. Comput. Commun. (Toronto, 1076), 485-494.




“ A VR T AR SN Lt e cat o " [ -" -'_' -'."‘."'. -
R L brucar A A AL ER AR SR AL SRS CUCAUCA AR A SN A A PR EA AN ACT A N A AL N A
iv‘ i '\“‘;' f‘t ; s . Q:: [\
[34) XK. Kumar, "Optimum End-to-End Flow Control in Networks™, ‘' ¢ {4 _

STV R MO

SrL I

=
(X

AR

1 @F ST

XY,

IBM Res. Rep. 307949'11979).

[35] M. Reiser,
"A Queuveing Network Analysis of Computer Communications Networks with
Window Flow Control”,
IEEE Trans. on Commun., COM-27 (1979), 1199-12009.

[36] 6. Pujolle and 0. Spaniol,
"Modelling and Evaluation of Several Internal Network Services",
Performance Eval. (Netherlands), 1 (14981), 212-224.

(37] J. Wong and M. Unsoy, "Analysis of Flow Control in Switched Data Networks"
Inf. Processing ‘77, IFIP Proc. (Toronto 1977), 315-320.

[38]1 W. Gordon ani G.F. Newell,
"Cyclic Queueing Systems with Restricted Length Queues”,
Oper. Res. (1967), 266-277.

[39] P. Kuehn,
“Approximate Analysis of General Queueing Networks by Decomposition”,
IEEE Trans. on Commun., COM-27 (1979), 113-126.

[40] F. Moss and A. Segall,
"An Optimal Control Approach to Dynamic Routine in Networks",
IEEE Trans. on Aut. Control, AC-27 (1982), 329-339,

R o TTED af 1nT N DESSARILY
AVAGLETIE T SR UTRR OF THE PURLIC
NRCTH T8N DRGANISATIONS

49

¢ {
*}
" 5“

“' L
A
/3

a7
’,

LA

E?f

7 "I
'.. '

’

DAL
'A"‘l"lfl-"

k;

A

s
[y

gﬂ
7y

%



{ & ¥ A g s
S R DL AR SRt AL RE LA A b LN N A A i L Rt e R R . O L R B

U’\’LIMI"/’ED B
DOCUMENT CONTROL SHEET ‘-J:J_L[ W l 7‘\” ml‘

Overall security classification of sheet .. .. cvvinanneniieinniiiieiiiaaleiireroencearasessnanonsaass sosannns

{As far as possible this sheet should contain only unclassified inforaation. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S) )

{+

hY G

SN

S

::: 1. DRIC Reference (if knowun) | 2. Originator's Reference |3. Agency Reference 4. Report Security
N Memorandum 3666 u/C  Classification _

A 2

J . 5. Originator's Code (if 6. Originator (Corporate Author) Mase and Location
s known) Royal Signals and Radar Establishment

N * ‘

NN

“3'-': 5a. Sponsoring Agency's 6a. Sponsoring Agency {Contract Authority) Mame and Location i

; - Code (i f known) ;

A . . }
-

3 ;
tv: 7. Title |
o THE APPLICATION OF QUEUEING THEORY TO COMMUNICATIONS NETWORKS - m
' ; A REVIEW ;
° 7a. Title in Foreign Language (in the case of translations) 1

0 ]

N |

:“';:' Tb. Presented at (for conference napers) Title, place and date of conference “

i ". . .A.i;

-‘_:_:‘_ 8. Author 1 Surname, initials| 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref. M

- King, TE G =

..v.-‘- i

:‘,: 11. Contract Nusber 12, Period 13. Project 1%, &her Reference i

e

| :;_ 15. Distribution statement Unlimited . ,“;"_'_'zq

23

T )

s Descriptors (or keywords)

o
S -
s

e,

:‘_’,’\ continue on separate piece of paper
)

:':'." Abstract

The application of queueing theory to the performance analysis of store-

o and-forward communications networks is described. Some basic definitions and o

results in probability theory are reviewed, and the important concept of the

o Markov and queueing theory to the study of networks and network components in

o equilibrium are taken from a wide range of recent research literature, with the
,. emphasis placed upon the formulation of the mathematical model, rather than its

B solution.
®. The author feels that this Review should prove invaluable to mathematicians who

o wish to gain an apprecistion of the power (and limitations) of an analytical

5\: technique that occupies an important position in current communications research.

2
>

’q S80/48

Q@

o
‘..

o

B '...

R e T A AT A e et AT A et ATt A A A AT AT A Y € a At TR T T T L T i LT e A .
A A e e e N N N A S e R T T P P A NP DA AL\ '\.\,.-ﬁ:c%i\m\d

1 ] » k)

J"’ -






